Parametric nanomechanical amplification at very high frequency.

نویسندگان

  • R B Karabalin
  • X L Feng
  • M L Roukes
چکیده

Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Measurements of Non - Linear Response in Mems Oscillators

We have fabricated several varieties of micro and nanomechanical resonators and have studied their phase response when driven at their natural frequency with and without parametric pumping. We found that micron-sized paddle oscillators with submicron-sized supports had resonant frequencies in the 3-10 MHz range for their translational mode. Due to the stretching of the support beams, the effect...

متن کامل

Parametric coupling between macroscopic quantum resonators

Time-dependent linear coupling between macroscopic quantum resonator modes generates both a parametric amplification also known as a “squeezing operation” and a beam splitter operation, analogous to quantum optical systems. These operations, when applied properly, can robustly generate entanglement and squeezing for the quantum resonator modes. Here, we present such coupling schemes between a n...

متن کامل

Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator.

We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit. By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB. This qubit-mediated effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a ne...

متن کامل

Noise squeezing in a nanomechanical Duffing resonator.

We study mechanical amplification and noise squeezing in a nonlinear nanomechanical resonator driven by an intense pump near its dynamical bifurcation point, namely, the onset of Duffing bistability. Phase sensitive amplification is achieved by a homodyne detection scheme, where the displacement detector's output, which has a correlated spectrum around the pump frequency, is down-converted by m...

متن کامل

The Effects of Nonlinearity on Parametric Amplifiers

Mechanical and electromechanical parametric amplifiers have garnered significant interest, as of late, due to the increased need for low-noise signal amplification in resonant micro/nanosystems. While these devices, which are traditionally designed to operate in a linear range, potentially represent an elegant, on-chip amplification solution, it is not readily apparent that this technical appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2009